A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies.
نویسندگان
چکیده
The role of the basal ganglia and cerebellum in the control of movements is unclear. We summarize results from three groups of PET studies of regional CBF. The results show a double dissociation between (i) selection of movements, which induces differential effects in the basal ganglia but not the cerebellum, and (ii) sensory information processing, which involves the cerebellum but not the basal ganglia. The first set of studies concerned motor learning of a sequence of finger movements; there was a shift of activation in the anterior-posterior direction of the basal ganglia which paralleled changes in the motor areas of the frontal cortex. During new learning, the dorsolateral prefrontal cortex and striatum (caudate nucleus and anterior putamen) were activated. When subjects had to select movements, the premotor cortex and mid-putamen were activated. With automatic (overlearned) movements, the sensorimotor cortex and posterior putamen were activated. When subjects paid attention to overlearned actions, activation shifted back to the dorsolateral prefrontal cortex and striatum. The cerebellum was not activated when subjects made new decisions, attended to their actions or selected movements. These results demonstrate components of basal ganglia-(thalamo)-cortical loops in humans. According to earlier studies in animals we propose that the basal ganglia may be concerned with selecting movements or the selection of appropriate muscles to perform a movement selected by cortical areas (e.g. premotor cortex). Secondly, a visuomotor co-ordination task was examined. In the absence of visual control over arm movements, subjects were required to use a computer mouse to either generate new lines or to re-trace lines on a computer screen. The neocerebellum (hemispheres of the posterior lobe, cerebellar nuclei and cerebellar vermis), not the basal ganglia, was more engaged when lines were re-traced (compared with new line generation). Animal experiments have shown that error detection (deviation from given lines) and correction occurs during line re-tracing but not line generation. Our data suggest that the neocerebellum (not the basal ganglia) is involved in monitoring and optimizing movements using sensory (proprioceptive) feedback. Thirdly, the relative contribution of sensory information processing to the signal during active/passive execution of a motor task (flexion and extension of the elbow) was examined; it was found that 80-90% of the neocerebellar signal could be attributed to sensory information processing. The basal ganglia were not involved in sensory information processing. They may be concerned with movement/ muscle selection (efferent motor component); the neocerebellum may be concerned with monitoring the outcome (afferent sensory component) and optimizing movements using sensory (feedback) information.
منابع مشابه
Functional and Structural Correlates of Motor Speed in the Cerebellar Anterior Lobe
In athletics, motor performance is determined by different abilities such as technique, endurance, strength and speed. Based on animal studies, motor speed is thought to be encoded in the basal ganglia, sensorimotor cortex and the cerebellum. The question arises whether there is a unique structural feature in the human brain, which allows "power athletes" to perform a simple foot movement signi...
متن کاملDysfunction of the basal ganglia, but not the cerebellum, impairs kinaesthesia.
Precise knowledge about limb position and orientation is essential for the ability of the nervous system to plan and control voluntary movement. While it is well established that proprioceptive signals from peripheral receptors are necessary for sensing limb position and motion, it is less clear which supraspinal structures mediate the signals that ultimately lead to the conscious awareness of ...
متن کاملThe basal ganglia and cerebellum interact in the expression of dystonic movement.
Dystonia is a neurological disorder characterized by excessive involuntary muscle contractions that lead to twisting movements or abnormal posturing. Traditional views place responsibility for dystonia with dysfunction of basal ganglia circuits, yet recent evidence has pointed towards cerebellar circuits as well. In the current studies we used two strategies to explore the hypothesis that the e...
متن کاملPrimary Dystonia: Conceptualizing the Disorder Through a Structural Brain Imaging Lens
BACKGROUND Dystonia is a hyperkinetic movement disorder characterized by involuntary, repetitive twisting movements. The anatomical structures and pathways implicated in its pathogenesis and their relationships to the neurophysiological paradigms of abnormal surround inhibition, maladaptive plasticity, and impaired sensorimotor integration remain unclear. OBJECTIVE We review the use of high-r...
متن کاملDiagnosis of patients with Parkinson's disease using quantitative susceptibility mapping
Introduction: Parkinson'sdisease isassociated withirondeposition in the brain. The T2-weighted imaging, T2* mapping, R2 mapping and Quantitative Susceptibility Mapping (QSM) are three common methods to evaluating the iron deposition in brain. Among three methods the QSM is more sensitive than others. Few studies have been used QSM for evaluating the iron deposition in the basa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain : a journal of neurology
دوره 121 ( Pt 8) شماره
صفحات -
تاریخ انتشار 1998